Enhancing the Physical Layer in V2V Communication Using OFDM – MIMO Techniques

نویسندگان

  • Ahmad Baheej Al-Khalil
  • Ali Al-Sherbaz
  • Scott Turner
چکیده

Vehicular Ad hoc network (VANET) has recently been attracting the attention of researchers as a new technology in the wireless communication system. Vehicle-to-vehicle V2V communication can be considered an important way to help the drivers to satisfy requirements such as less congestion, accident warning, road exploration, etc. The propagation issues such as multipath fading significantly affect the reliability of V2V communication. The goal of this work is to enhance the performance of the physical layer PHY in V2V communication. However, the cellular phone channel has been used to evaluate the possibility of apply it in the vehicular communication V2V. The simulation results observed that the transmitted signal is affected by a multipath fading channel. In order to overcome this problem two techniques are used: Orthogonal Frequency Division Multiplexing (OFDM) technique and Multiple-Input-MultipleOutput (MIMO) diversity technique. The simulation results showed that the OFDM technique overcomes the multipath fading with high transmission power. On the other hand, MIMO diversity technique called Alamouti Space-Time Code for two transmitters and two receivers (MIMO 2x2) is used to improve the error degradation with less transmission power. Keywords— VANET; V2V; DSRC; OFDM; MIMO; Alamouti.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doppler Shift Impact On The MIMO OFDM System In Vehicular Channel Condition

Vehicle-to-vehicle (V2V) communication systems will play an important role in intelligent transportation systems (ITS). But in high mobility road condition, orthogonal frequency division multiplexing (OFDM) is very sensitive to Doppler shift. In this scenario multiple input and multiple output (MIMO) system combined with OFDM, make MIMO -OFDM techniques very attractive and productive for vehicl...

متن کامل

Single-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels

In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...

متن کامل

Design of Pre - Processed Cross Layered Adaptive Modulation for Mimo - Ofdm Receiver Architecture

Modern wireless communication applications are characterized by the need for advanced signal processing techniques such as Multiple-Input Multiple-Output (MIMO) technology for achieving high throughput and diversity and Orthogonal Frequency Division Multiplexing (OFDM) for achieving robustness to fading. This paper introduces techniques that increase the throughput, reduces preprocessing delay ...

متن کامل

Selective Tone Reservation method for PAPR reduction in SFBC-OFDM systems

The high Peak to Average Power Ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) and MIMO-OFDM systems reduces the system efficiency. In this paper, an extension of Tone Reservation (TR) method is introduced for PAPR reduction in Space Frequency Block Coded OFDM (SFBC-OFDM) systems. The proposed algorithm is based on a time domain kernel which is added to the signal of the anten...

متن کامل

PMI-based MIMO OFDM PHY Integrated Key Exchange (P-MOPI) Scheme

In [1], we have proposed the MIMO-OFDM PHY integrated (MOPI) scheme for achieving physical-layer security in practice without using any cryptographic ciphers. The MOPI scheme uses channel sounding and physical-layer network coding (PNC) to prevent eavesdroppers from learning the channel state information (CSI). Nevertheless, due to the use of multiple antennas for PNC at transmitter and beamfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013